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1. Introduction

Preconditioned conjugate gradient (PC,,_._)_methods have been a very popular and

successful class of methods for solving large systems of equations arising from discretiz_-

tions of elliptic partial differential equations. With the advent of parallel computers in

recent years, there has been increased research into effectively implementing these

methods on various parallel architectures. In this paper, we present a class of precondi-

tioners for elliptic problems built on ideas from the digital filtering theory and imple-

mented on a multilevel grid structure. Our goal is to work towards preconditioners that

are both highly paral]elizable and rapidly convergent.

The idea of preconditioning is a simple one but is now recognized as critical to the

effectiveness of PCG methods. Suppose we would like to solve the symmetric positive

definite linear system Ax=b, where A arises from discretizing a second-order self-adjoint

elliptic partial differential operator. A good preconditioner for A is a matrix M that

approximates A well (in the sense of producing a spectrum for the preconditioned system

M-IA clustering around 1 and having a small condition number) and for which the

matrix vector product M-Iv for a given vector v can be computed efficiently. With such

a preconditioner, one then solves in principle the preconditioned system M-IAx----A/l-lb

by the conjugate gradient method.

Since an effective preconditioner plays a critical role in PCG methods, many classi-

cal preconditioners have been proposed and studied, especially for second order elliptic

problems ...... these are the Jacobi preconditioner (diagonal scaling), the SSOR

preconditioner [3], the incomplete fsctorization preconditioners (ILU [25] and MILU [15])

and polynomial preconditioners [2],[19 I. These preconditioners have been very successful,

especially when implemented on sequential computers.

In the parallel implementation of PCG methods, the major bottleneck is often the
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parallelizationof the preconditioner,since the restof the PCG methods can be psrallel-

ized in a straightforwardway. Unfortunately,previous works [12],[16]have shown that

for many of the classicalpreconditioners,there is a fundamental tradeoffin the ease of

parallelizationand the rateof convergence. A principalobstacleto paxaUelizationisthe

sequentialmanner in which many preconditionersuse in traversingthe computational

grid ---the data dependence implicitlyprescribedby the method fundamentally limits

the amount of parallelismavailable.Re-ordering the grid traversal(e.g.from natural to

red-black ordering) or inventing new methods (e.g.polynomial preconditioners)to

improve,the psrallelizationalone invariablyhas an adverse effecton the rate of conver-

gence [12],[23].

The fundamental difficulty can be traced to the global dependence of elliptic prob-

lems. An effective preconditioner must account for the global coupling inherent in the ori-

ginal elliptic problem. Preconditioners that use purely local information (such as red-

black orderings and polynomial preconditioners) axe fundamentally limited in their abil-

ity to improve the convergence rate. On the other hand, global coupling through a

natural ordering grid traversal is not highly parMlelizable. The fundamental challenge is

therefore to construct effective global coupling that are highly parallelizable. Ideas along

this line have of course been explored in the development of multigrid methods as solu-

tion [10],[17] as well as preconditioning techniques [20],[21] sad the more recently pro-

posed hierarchical basis preconditioner [8],[29].

We are thus led to the consideration of preconditioners which share global informa-

tion through a multilevel grid structure (ensuring a good convergence rate) but perform

only local operations on each grid level (and hence highly parallelizable.) Since we are

using the multilevel iteration within an outer conjugate gradient iteration, we have more

flexibility in terms of the choice of inter- and intra-grid level operators, such as interpola-

tion, projection and smoothing. One preconditioner of this type has been proposed
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recently by Bramble, Pssciak and Xu[9] and Xu[28]. The methods that we propose in

this paper are quite similar to their preconditioner and our digital filtering framework

can be looked at as providing an alternative view of their method. It Mso Mlows the

flexibility in deriving severs] variants. A major dil]'erence in the approach taken by

Bramble, et sl. and this paper from multigrid methods is that the smoothing operation in

multigrid methods is replaced by a simple scaling operation. Other types of multilevel

preconditioners have been studied by Vamilevski [27], Axeisson-Vassi]evski [6],[7],

Kuznetsov [24]and Axelsson [4].

The outlineof the paper isas follows.In Section 2, we describeour framework for

derivingmultilevelfilteringpreconditionersfor a model problem. The basicframework is

then extended to more generalproblems in Section 3. In Section 4, we brieflysurvey

severalother preconditionersof the multileveltype. Numerical resultsfor (model, vari-

able coefficientand discontinuouscoefficient)problems in 2D and 3D are presented in

Section 5, comparing t_e performance of severalmultilevelpreconditioners,includingthe

usual multigridmethod as a preconditioner,the hierarchicalbasispreconditionerand the

method of Brarnble-Pasciak-Xu.Some briefconcludingremarks are given inSection 6.

We note that the main emphasis of the present paper is on the convergence

behavior of thesemultilevelpreconditioners-- no attempt ismade r,oassess_heir paraJ-

lele/_ciency.That willbe the subjectof a forthcoming paper.
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where A, u

respectively.

It is well known that the matrix A can be diagonalized as

2. Multilevel filtering preconditionem: fundamentals

2.1 Motivation

Consider the one-dimensional discrete Poisson equation on [0,1] with zero boundary

conditions on a uniform grid flA,

1 E-Z
(-2 E +I--_- )u, ==f, , n ==I, -.- ,N-I, (2.1)

where N -- h -l ffi 2/_ with integer L > 1 and E is the shift operator on n A. We denote

the above system by

Au---f,

and f correspond to the discrete Laplacian, solution and forcing functions

Clearly, A is a tridiagonal matrix with diagonal elements -½, 1 and --½.

A ffi W r AA W, (2.2)

where AA is a diagonal matrix

diag(),l, "'" ,kk, "'" ,)'N-l),

and W is an (N-l) 2 _luare matrix whose kth row is

(--_)_ (sin(k_rh), ... , sin(krnh),

)_k I" 1 -- co_ k _h ),

• .. , sin(k_N-l)h) ). (2.3)

The diagonalization of the matrix A. can be interpreted a.s the decomposition of the driv-

ing and solution functions into their Fourier components, i.e.

N--!

= -- _ f, sin(k,nh),
n=l a=l

One can easily verify that uk and/t are related via

n --0,1,2, ... ,N.

A(k) =L, k -- 1, 2, ..., N-I ,

where

:i(k)= xk= I-

isknown as the spectrum of the discreteLaplacian.

(2.4) .
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In order to invert A, we can make use of (2.2) and obtain

A-l =. Wr A_IW .

The above procedure also serves as the general framework for fast Poisson solvers in

higher dimensional cases. However, fast Poisson solvers are not generally applicable for

nonseparable elliptic operators and irregular domains. Instead, we want to find good

approximations to this solution procedure which are extensible to more general problems

and then use them as preconditioners. The fundamental ides is to avoid the use of

FFT's but instead use a sequence of filtering operations to approximately achieve the

desired spectral decomposition. This explains the motivation and the name of the mul-

tilevel filtering (MF) preconditioner proposed in this paper.

2.2 Piecewise constant approximation of the spectrum

Our main idea for deriving the IV[F preconditioner for A is to divide all admissible

wavenumbers into bands and to approximate the spectrum _. (k) at each band with some

constant. To be more precise, consider the following piecewise constant function in the

wavenumber domain

where

P(k)ffic,, k B,, 1<l<Z,

B_ffi{k:21-__<k<2 t a_d kEI},

is the lth waveuumber band. Let Ap be the diagonal matrix with .P(k) as the kth diag-

ona] element, i.e.

Ap-dia_(P(1),P(2), -.. ,P(N-I)),

and P - WrAp W. Then, the P-preconditioned Laplacian becomes

(2.8)

P-IA ffi W r AP__A W,

where

hp-L A =ffi(Ap)-IAA ffi diag ( _'1 X_ ,ks_ t _ J _ v

Cl ¢2 C2

• ° ° • . ° X._'-i XN__)
cl c/.
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The question is how to choose appropriate c_'s to reduce the condition number r_P-IA ).

Suppose that we can find cl's so that

Cl<_ X.-_-t<_C_, kEBt,l<l<L,
cl

where C 1 and C_ ate poeitive constants independent of h. Then, P and A are spectrMly

equivalent. There are many ways to achieve this goal. For example, we can choose any

eigenvMue ),within band Bt to be the constant ct.

consider the choice,

. cl _- 4-(L-l).

The ratio of _.(k) and/5(k) is then bounded by

for kEB t .

respectively

and

For the following discussion, let us

4 _< 4L-'
The largest and smallest values of ]5-1(k).4(k) for k E B are bounded

max 4z'-' [l--cos(2-1+l_')]< n2Xm_(P-IA) ==max _6-1(k)/l (k) < l_<t<L T

),nu,,(P-IA) -- rain /_-l(k)._.(k) > min 4 L-' [1--cos(2-L+t-l_')] > 1
t -- 1<t._, -- "

Note that the last inequalities in above equations hold independent of L, or equivalently,

the grid size h. Thus, the condition number K of the preconditioned operator P-IA is

bounded by a constant

n(P-IA ) < _ _ 4.93.
2

We plot the spectra A(k), P-l(k) and P-t(k)A (k) in Figure 2.1 for N - h -l - 256 with

cl defined in (2.7).

2.3 Decomposition and synthesis based on filtering

The preconditioning procedure



-7-

P-lr = WrA_ 1Wr , (2.8)

consists of three building blocks: decomposition (W), scaling (A_ "I ) and synthesis (Wr).

Let us rewrite (2.8) as

where

£

p-1 r =( _!wTw t ) r,
t..1 Cl

Wt, 1 __ I <( L, are (N-l) 2 square matrices which have the same 21-1 to 2t--1

rows as W and zero vectors for remaining rows. Consequently, we have

wt , k EBtwtrwt wt = 0 , otherwise ' (2.9)

where wt is defined in (2.3).From (2.9),we see clearlythat W_ functions as an ideal

bandpass filter for band Bl. Although it is possible to implement the ideal bandpass

characteristics (2.9) with FFT or bandpass filters of size O(N), the corresponding imple-

mentation is either not easily generalizable or simply too expensive ( O(N 2) complexity ).

Instead, we want to approximate the ideal bandpass filter W_ with nonideal bandpass

filters F l

wt , k E BlFjrF_ wk _. 0, otherwise '

in such a way that Fl can be implemented cost-effectively for general problems. Note

that F t is in general a dense matrix of size (N-l) 2. The resulting preconditioner is in

form

/.
M-It ffi ( _ 1FTF ! ) r . (2.10)

1==1 Cl

Before the detailed discussion of implementing FI, I__IC-.L, with digital filters, it is

worthwhile to summarize the similarities and differences between the fast Poisson solver

(2.5)and the MF preconditioning(2.10).They are both based on the spectraldecomposi-

tion idea. The fast Poisson solverdecomposes a function into its Fourier components

through FFT while the MF preconditioner decomposes it approximately into a certain
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number of bands through filtering. The filtering operations, which correspond to local

averaging processes, can be easily adapted to irregular grids and domains and variable
T_

coefficients. In contrast, FFT is primarily applicable to constUt coefficient problems

with regular grids and domains. Besides, for the fast Poisson solver we usually require

the detailed knowledge of the spectrum. But for the MF preconditioner we only have to

estimate how the spectrum varies from one band to another.

In the context of multirate signal processing[13], the separation of a function into

several components each of which is confined in a narrow wavenumber band is known as

the filtei: bank analyzer and the reverse process is the filter bank synthesizer. Although

there exist many ways to implement the filter bank analyzer (Ft, l_<l__-.L) and syn-

thesizer (F r, I<I_L ), a simple design illustrated by the block diagram of Figure 2.2 will

be sufficient for our purpose. "This design is based on the cascade of a sequence of ele-

mentary filters Hz., H/._z, • • • , H_, where the function of H_ is to preserve Fourier com-

ponents contmned in bands Bz, "'', Bt-z and to eliminate Fourier components con-

From Figure 2.2, we see that Ft are related to elementary filters Httained in band BI.

via

FL --I -HL ,
/.

F,=Cz-n,)[ n n.,l.
, ,-/..I..1

L

Fl- II H,.
,-2

u_<t _<L-z,

(2.11a)

(2.11b)

(2.Iic)

It is not hard to check that we can obtain components in bands B L and B z from the

outputs of F_ and F z. The product of a sequence of elementary filters appearing in

(2.lib) leads to the band BzU... I..IBI, from which the band B t can be separated by

using the filter I - Hr. Thus, the problem of designing the filter bank F_, l<l--_(,, is

transformed into an equivalent one of designing elementary filters Ill, I<I_.L.
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2.4 Design of elementary filters

Consider the design of the elementary filter HL appearing at the first stage. It is

desired that the filter HL ffi WTAtI,. W has the following ideal lowpa_ characteristic,

j_L(k)= {10 , O<_k _2L-', 2 L-1 _ k _ 2 L '

where _IL(k ) is .the kth element of the diagonal matrix AHL SO that we are able to

separate the function r into two bands: the high wavenumber band (I--HL)r and the

low wavenumber band H/_ r.

We will approximate the above ideal filter with a nonideal lowpass filter of size

(2J+D,

J

HL,_ ffia0 + E ai ( Ei + E-i ). (2.12)
j-I

where the coefficients a 0 and aj's are to be determined. In order to define the operation

J

HL,_v. = a0 + E "i ( v.+i + v.-i )
i-I

for any vector v. appropriately, the odd-periodic extension of v. is assumed,

v_. ------v. and v.+2p N =v. , for integerp .

Consequently, the filter HL,j corresponds to a circulant matrix. The above odd-periodic

assumption is only used for analyzing and designing filters. The actual implementation

of the MGMF algorithm (see Section 3.5) does not rely on this assumption.

There are numerous ways to determine the coefficients a 0 and aj's depending what

approximation criteria to be used. The operator H/.j has the eigenfunction sin(k_rnh)

with the eigenvalue

./

/_L,:(k) = _0+ 2 E "i co_(k_'h).
j-I

Here we consider a class of Iowpass filters based on the following two criteria:
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I I_ 1(i) --[f/L.j(N--k)--¥],

(2) ]_/,,j(0)= I a4_dthe firstjth derivatives(1 __ j __ J) of RLj(0) _re allzero.

I •
The firstcriterionimpliesthat the function_/,j(k) - _--m odd symmetric with respect

to k = --.NA directconsequenceof thiscriterionisthat
2

a°-2 "I and aj = 0 , j positiveeven .

The second criterion,calledthe mazirnallyflatcriterion[18],requiresthe approximation at

the originto be as accuratea.spossible.Itisused to determine aj with odd j. In Table

2.1,we listcoefficients%- for J = I,3, 5 obtained according to criteria(I) and (2) and

plottheirspectra in Figure 2.3with N - 2s = 256. The laxgerJ becomes, the betterthe

approximation is.

J a o al 63 45

I 1 0 0
1 ¥ ¥

1 9 --1 03 ¥ 3"-F

1 150 --25 3

2 512 512 512

Table 2.1: Coeffciente of s. clsm of nonideM lowpus filters

A,s illustrated in Figure 2.2, the low wavenumber baud of the function • is used

the input to the filter HL-I at the next stage. The filter Ht-i can be constructed with

the same setof coefficientsused by H/., i.e.

$

HL_Lj -- a o -i- _ aj ( E _j -t"E -2j ). (2.13)
j-l

Comparing (2.12) and (2.13), we see that the only difference between H/.j and H/._L_, is

the position of grid points used for averaging. For the first-stagefilterHL,j, local
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averaging is used. For the second-stagefilterHL-I,J, we consider averaging between

pointsseparated by 2h. This designisdue to the followingreason. From (2.13),we see

that the filterHL_I,: has the spectrum

J

_'-L_(k)=_0+2 Z _ico_k.j2h),
j-.l

and that _L-i,j(k) isrelatedto/_L,_(k)via

_'L_,,_(k)ffi_L,_(2k).

Consequently, for functions consistingonly.of components in low wavenumber region

1_k _2 L-I, _L-l behaves likes lowpass filterwhich preservescomponents in the region

1__k_2 L-_ and filtersout components in the region2L-2_-,k<2 L-I. However, note that

HI, I<L isnot a lowpass filterwith respectto the entirewavenumber band.

By applying the same procedure recursively,we can definethe general elementary

filterHt on a uniform infinitegridas

$

Hi,j ffiao + _ ai ( E_'# + E-_-'i ), _ < l < L, (2.14)
j'-I

where the coefficientsaj'sare listedinTable 2.1. The spectrum of Htj is

$

R,,_(k)- _0+ Z °i_s(k"J2"-_h),2_<l< L. (2.1s)
j-l

It is clearfrom (2.14)that the elementary filterHtj issymmetric. So is the bsndpsss

filterF_. The constructionof the bandpass filterFl with elementary filterslitisillus-

trated in Figure 2.4,where I=L-I lad J-I are chofen ss exsmpl'e. We know from

(2.11)thatFL__- (I- H___)H_.

The above discussionis based on the odd-periodic property of the sequence vn.

However, thismay not be easilyimplementable for general multidimensional problems.

The di_icultyariseswhen the sizeof Hi,j isso largethat itoperates on pointsoutside

the domain. There are two possiblesolutions.Itmay be preferableto constructfiltersof

largersize by the repeated applicationof filtersof smaller size. For example, we can
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apply the filter H/.,,, (2.12) with Jffi=l twice. This is equivalent to a filter of size 5,

IE-I I 1E),f_.._E-_+IE-I 3 1E+___E2 "_" "(¥ +¥+ 4 ¥ +_-+ 4
Another possibility is to apply smaller filters at points cloee to boundaries and larger

filters at points far away from boundaries.

Note also that, for fixed J, the size of the elementary filter Ht, J increases as l

decreases. However, this problem can be resolved by incorporating the multigrid discreti-

zation structure into the above multilevel filtering framework as described in Section 3.1.

2.5 Fourier Analysis and higher dimensional cases

Since the preconditioner M-I= _ct-lFirFt and the Laplacian A share the same
J

eigenvectors, i.e. Fourier sine functions, the spectrum and condition number of the MF-

preconditioned Laplacian can be analyzed conveniently by Fourier analysis. From (2.11),

we know the following spectral relationship

;',._(k)ffiz - _,.j(k),

_',._(k)- ( I - _,._(k)) [ n _,._(k)1, 2 < t < L-I. (2.18)
p-i÷l

L

where fll,j(k), l</<l, are given by (2.15). Using (2.4), (2.7) and (2.18), we can deter-

mine the spectrum of M-IA,

/,

X(M-IA)- _r"(kN (k)- _',r,(k)_',.j(k)_(k).
imi Vl

The spectrum X(M-IA ) "_ plotted as function of k with J = 1, 3, 5 and h -t = 258 in

Figure 2.5. We should compare these spectra with that in Figure 2.1 based on the ideal

filtering assumption. All of them have one common feature. That is, eigenvalues are

redistributed in such a way that there exist many local maxima and minima. The condi-

tion numbem for ]- 1, 3, 5 are 2.50, 1.88 and 1.93 respectively. Note that these

numbers are in fact smaller than the condition number 4.93 obtained with ideal filtering.
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The generalization of the _ preconditioner to two- or three-dimensional problems

on square or cube domains can be done straightforwardly. For example, we may con-

struct the two-dimensionLl elementary filter by the tensor product of one-dimensional

elementary filters along the z- and y-directions,

J J

H,._= [ oo+ E ai ( E? _i + E;_'_J ) ]x [ Oo+ _ °i ( E,_i + E; 2"_i)],
j-1 j-I

which can further be simplified by using operator algebra[14]. For example, the

coefficients for Hl,,l can be written in stencil form as

121
1 9 (2.17)HL.i : _- 94

191

Similarly, the three-dimensiona) elementary filter can be obtained by the tensor product

of three one-dimensional filters along the z-, U" and z-directions.

The condition numbers of one-, two- and three-dimensional MF-preconditioned

Laplscians with two types of nonideal filters (J = 1 and J -= 3) are computed and plot-

ted as function of the grid size h in Figures 2.6 (a) and (b). These figures show that M

and .4 are spectrally equivalent.
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3. Multilevel filtering preconditioners: generalizations

In Section 2, we discuss the construction of the MF preconditioner for the model

Poisson problem based on a single discretization grid. This section will discuss the gen-

eralization of this preconditioning technique so that it can be implemented more

efficiently and applied to more general self-adjoint elliptic PDE problems.

3.1 Multlgrid multilevel filtering (MGMF)

The filtering operation described above is performed at every grid points at all lev-

els 2<:l_L. Since there are O(logN) levels and O(J]V) operations per level, where N

and .f denote the order of unknowns and the filter size respectively, the total number of

operations required is proportional to O(JlVlog./V). However, since waveforms consisting

only of low wavenumber components can be well represented on coarser grids, we can use

the multigrid philosophy[10],[17 ] and incorporate the multigrid discretization structure

into the filtering framework described in Section 2. That is, we construct a sequence of

grids f2t of sizes hi---O(2-1), l_l_L, to represent the decomposed components. Then,

the total number of unknowns is O(N) and consequently the total number of operations

per MF preconditioning step is O(JN). Note that J is a constant independent of N.

The corresponding block diagram is depicted in Figure 3.1. The preeonditioners

illustrated in Figures 2.2 and 3.1 are called the SGMF and MC.,MF preconditioners

respectively. Note that the MGMF preconditioner k obtained by inserting down-

sampling (I/-i) and up-sampling (Ir/_l) operators into the SGMF preconditioner. With

the notation commonly used in the multigrid literatures, the down-sampling and up-

sampling operators for grids f_l (h _2z-rh) and fll_ l (hffi2 L-t+l) can be defined as

li0ol 000!/ti-I: I 0 , _-I: 0 I 0 .

OO 0 00i-i

It is easy to verify that a lowpass filter followed by a down-sampling operator is the

same as the restriction operator in MG methods while a upsampling operator followed by
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a lowpass filter is equivalent to the interpolation operator [22].

3.2 Lowpaas versus bandpass filtering

To save computational work, we can further simplify the MGMF preconditioner in

Figure 3.1 by deleting the paths and the associated work corresponding to I -H 1. As

given in Figure 3.2, we have the modified MGMF preconditioner

where

• L

l-I ul

°"

 ffiI,
L

Gl == II l_-I Hp , for2<l<L-1
pml-I.l

L

Ol == H2 Y-3 I_-I tip .

(3.1)

Note that the bandpass filters F l in the MF preconditioner M have been repla_ed by the

lowpass filters Gi in the MF preconditioner Q. By choosing di's appropriately, we can

make Q behaves very simil_ly to M as described below. With the MF preconditioner

implemented by (3.1), Fourier components of band Bt exist in the first L-I+I levels and

these components are multiplied by dE l, • •., d:-1 respectively. Therel'ore, the scaling

constants dt's are implicitly defined via

/.
E ! = I_. (3.2)

Solving (3.2) for dt gives:

d/. =ffict and dl == I-] -1 'i--/'--l' -.. ,1. (3.3)
¢i --¢1+1

However, we find from numerical experiments that the parameter sets {el} a_ad {dr} used

in Figure 3.2 give about the sine convergence rate. This can be explained by the obser-

vation that, br small 1, d! _ cI since ct -l >> qg_.
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The preconditioning Q-lr can be viewed as a degenerate multigrid method, for

which we have a sequence of restriction Lad interpolation operations but where the error

smoothing at each grid level is replaced by a_ appropriate scaling.

3.3 Dkeretization with nonuniform gridl

The above observation leads us to generalize the MF preconditioner Ix) the case of

nonuniform grids commonly obtained from the finite-element discretizxtion. That is, one

can view projection as decomposition and interpolation as synthesis and any multigrid

method can be used as an MGMF preconditioner if we replace the potentially more

expensiCe error smoothing by a simple scaling. It is well known that the eigenvxlue Xt in

band Bt (see Section 2.2) behaves like O(hl-_), where ht describes approximately the grid

spacing for level l [9]. Therefore, a general rule for selecting the scaling constant ct at

grid level I is

c, = o(h,-').
This generalized version is closely related to the preconditioner by Bramble, Pascisk and

Xu [9]. They derived their preconditioner in the finite-element context discretized with

the nested triangulsr elements. From our filtering framework, the corresponding elemen-

tary filter H/. takes the form

1

which is different from HL,] given by (2.17).

li*r, (3.4)
10

We czn derive other filters from (3.4) by

applying it more than once. For example, by applying it twice, we get

H/_,TBpx :

i 121

2 6 82
1

-_- 61081
8 6 20

2100

(a.s)
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In order to eliminate the directional preference, we csa apply (3.4) in alternating direc:

tions which gives a symmetric filter:

!i**il484
l

 L.. mpx: 6 8 8 . (3.8)
464

121

3.4 Diagonal scaling

The MF preconditioner is designed to capture the spectral property (or h-

dependency) of a discretized el]iptic operator but not the variation of its coe_cients.

This is _Iso true for the hierarchical basis and BPX preconditioners. In order to take

badly scaled variable coefficients into account, we use the MF preconditioner in associa-

tion with diagonal scaling in our experiments[16]. The diagonal scaling is often used for

cases where the dia4_ona] elements of the coefficient matrix A vary for a wide range.

Suppose that the coefficient matrix can be written as

A - D_AD _ ,

where we choose D to be a dis4_onal matrix with positive elements in such a way that

the diagonal elements of A are of the same order, say, 0(1). Then, in order to solve

A u _f, we can solve an equiveJent problem A G =-f, where G _D_u and

f --D-_f, with the MF preconditioner. There exist other ways to incorporate the

coefficient information into preconditioners of the multilevel type, say, to use the Gauss-

Seidel smoothing suggested by Bank et sl.[8].

3.5 Summary of practical MGMF _lgorithm

Given a sequence of grids f_l, I_/_.L, down-sampling (/li+l) and up-sampling (I_ ÷l)

operators between grids f_l and nt+l, sad appropriate elementary filters H1 defined on

f_l, the algorithm corresponding to the block diagram given by Figure 3.2 can be sum-

marized as follows,
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Decomposition:
lJ/, :wr,
for/ _L-1, "'" ,2

v_ := l_.lH_.lvl+*,

V 1 :-- _'_2V2,

Sc_ling:
for/--L , "'" ,1

wI :-- v l d1-1

Synthesis:
a_ :--w2 4-H2wl,

for/--2, "'" ,jL

-It :-- 8/,

Table 3.1 Computation of _-lr

This is the MGM._' algorithm implemented in Section 5.
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4. Brief survey of multilevel preconditioners

In this section, we very briefly survey other multilevel preconditioners that have

been proposed in the literature =nd their relationships to one xnother.

4.1 Multigrid preconditioner (MG)

A natural choice for a multilevel preconditioner is to use a fix number of cycles of a

conventional multigrid method. This approach has been explored early on in the

development o£ multigrid methods [20],[21]. The basic operations on each grid are inter-

polation: projection and smoothing operations, each of which can be easily designed to be

highly parallelizable. For example, in the V-cycle strategy, each grid is visited exactly

twice in each preconditioning step, once going from fine to coarse grids and once coming

back from coarse to fine. However, for highly irregular problems, such as singularities in

the solutions due to re-entrant corners and highly discontinous coefficients, it is not clear

how to choose the smoothing operations and the performance can deteriorate.

4.2 Hierarchical basis preconditioner (HB)

Another preconditioning technique of multilevel type is the hierarchical basis

method [8],[29]. The name refers to the space of hierarchical basis functions defined on

the grid hierarchy. The usual nodal basis functions are used except that those defined at

grid points on a given level which also belong to coarser levels are omitted. Let the

hierarchical basis functions be denoted by _, where l denotes the grid level and j the

index of the basis function on that level. Then the action of the inverse of the hierarchi-

cal basis preconditioner M on a vector v can be written as:

- ssr ,
I j

and can be computed by a V-cycle with the matrix ST corresponds to a fine to coarse

grid traversal and S a coarse to fine traversal. On each level, only local operations arc

performed. In 2D, the condition number of the preconditioned system can be showned to
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grow like O(log2h-I), which is a very slow growth. Unfortunately, this nice property is

lost in 3D where the growth can be proved to be O(h-1)[26],[29]. However, these

theoretical results are proven under much weaker regularity assumptions than for the

multigrid methods and the computational work per step is O(h -1) even for highly

nonuniform sad refined meshes. For numerical experiments on parallel computers, see

[11,[181

4.3 Method by Bramble-Puciak-Xn 0BPX')

Very recently, Bramble-Pasciak-Xu[9],[28] proposed the following preconditioner for

second-_rder elliptic problems in R d:

•t-,v =
t j

where _J are the nodal basis functions and ht is measure of the mesh size of grid level 1.

Since the form of their preconditioner is very similar to that for the hierarchical basis

method, the computations can be arranged in a similar way via a V-cycle. They proved

that the condition number of the preconditioned system can be bounded by O(logh -l)

for problems with smooth solutions, by O(logffih -l) for problems with crack type singu-

larities sad by O(logSh -l) for problems with discontinous coefficients. In 3D, this is a

significant improvement over the hierarchical basis method.

4.4 .Algebraic multilevel precondltloners (AMP)

Vasailevski[27] proposed a different approach to derive multilevel preconditioners.

He used the standard nodal basis functions and a multilevel ordering of the nodes of the

discretization, in which nodes at z given level belonging to a coarser grid are ordered

after the other nodes. He.tben considered an approximate block factorization of the

stiffness matrix in this ordering, in which the successive Schur complements at a given

grid level are approximated by iteration with the preconditioner of the stiffness matrix

recursively defined at the current level. He showed that, with one iteration at each level,
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the condition number of the preconditioned system can be bounded by O(logh-l). A

similar method has also been proposed by Kuznet, sov [24]. Later, Axebson-Vassilevski

[61,[7 ] improved this bound to O(I) but carrying out recursively more (Chebychev) itera-

tions with the preconditioner at each level. Axelsson [4] also showed that the same tech-

nique can be applied when hierarchical basis functions are used instead of the nodal

basis. Note that when the number of iterations at each level exceeds 1, the grid traversal

differs from all the previously mentioned V-cycle based methods. At this time, we have

not included non-V-cycle type preconditioners in our numerical comparisons but plan to

do so in-the future.

4.5 Relationship among multilevel preconditioners

As can be seen from the presentation above, various multilevel preconditioners share

some similarities. Most of the multilevel preconditioners are in the form of a multigrid

V-cycle (MG, HB, BPX and MF) except AMG methods. The MF preconditioner is very

similar to the BPX method. The MF method allows some flexibility in the choice of

filters (basically any multigrid residual averaging operators can be used) and does not

depend on the use of a finite element discretization with nested nodal basis functions. It

also allows a single grid (i.e. non-multigrid) version which may better suit massively

parallel architecture computers. On the other hand, the finite element framework allows

an elegant proof of the asymptotic convergence behavior for rather general problems as is

done in [9],[28] whereas the filtering framework is rigorously provable for constant

coefficient model problems only (idthough much more detailed information can be

obtained for them.)

Finally, it is interesting t_ compare these preconditioners with the conventional

multigrid method as an iterative method (instead of as a preconditioner). Several of the

preconditioners have the form of a conventional multigrid cycle, except that the smooth-

ing operations are omitted. For less regular problems where a good smoothing operator
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is hard to derive and could be quite expensive,onestepof thesepreconditionerscan be

substantially less expensive that a corresponding step of the multi_-id iteration. In a

sense, one can view these preconditioners as efficiently capturing mesh size dependent

part of the ill-conditioning of the elliptic operator and Icaves the other sources of ill-

conditioning (e.g. discontinuous coefficients) to the conjugate gradient iteration. The

combination oi multigrid and conjugate gradient holds the promise of being both robust

and efficient. However, it seems that to get a spectrai]y equivalent preconditioner, one

has to go beyond the V-_ycle and perform more iterations on each grid as in the AMP

methods.



5. Numerical e_periments

In this section, we present numerical results for two-_and three-dimensional test

problems to compare the convergence behavior and the amount of work needed for vari-

ous preconditioners discussed previously. The preconditioners impiemented are:

HB: hierarchical basis preconditioner using linear elements for 2D and trifinear ele-
ments for 3D problems,

MG(i,i): multigrid preconditioner with one V-cycle, where i is the number of pre- and
poet-smoothings,

BPXI the BPX preconditioner for 2D problems (Hi, given by (3.4)),

BPX2: a modified versionof BPX preconditionerby filteringtwice for 2D problems

(HL given by (3.5)),

BPX3: another modified version of BPX preconditioner by filtering twice but using
finear elements of different orientations for 2D problems (Hi, given by (3.6)),

MGMFI: the MGMF preconditioner with the 9-point (2.15) or 27-point filter for 2D
and 3D problems respectively,

MGMF2: a modified versionof MGMF preconditionerin which the 0-point(or27-point)
filterisapplied twice,

MGMF3: another modified versionof MGMF preconditionerin which the 9-point (or

27-point) filteris applied once at the finestgrid level(to have a smaller

amount of work compared to MGMF2) sad twice at other grid levels(to

achievea fasterconvergenceratecompared to MGMFI),

RIC: the relaxed incomplete Cholesky preconditioner [5] is included for comparison

purpose. For the relaxation factor, we use the optima] value _ == I -- 8sin _z'h
2

from [11]. The number of iterations required for RIC can be bounded by

The operation counts per iteration (just for preconditioning) for each method for 2D

•nd 3D problems are given in Tables 5.1 sad 5.2 respectively. The operation counts

include addition, multiplication and division (each is counted as one operation) and does

not include other overhead operations such as condition checking or data copying. The

operations required in each CG step for 2D and 3D problems are 21N and 25N



respectively.
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Preconditioner

RIC
lib

MG(1.11
BPXI

BPX2

BPX3

MC'MF1
MGMF2
MGM_3

Table 5.1: Work per iteration for

Operation count per iteration

9N
7N

3_ N
_N

26 N

26 N

9N
27 N

15N

preconditioners (2D)

Precondition_r
RIC

}IS
MCMF1 (BPX1)

MGMF2 (BPX2i

MGMF3

Operation c0_llt per iteration

13 N
8N

9N

32 N
,12 N

Table 5.2: Work per iteration for preconditioners (3D)

From Table 5.1, we observe that the operation counts per iteration for BPX1 and

MCMF1 are much less than that of the MG(1,1) preconditioners because the former

preconditioners do not need smoothing which is expensive. In general, for 2D problems,

MG(i,i) preconditioner takes (38 +32X(I-1))N operations. For example, MG(3,3)

preconditioning requires I02N operations. Also, note that the application of filtering

twice requires about three times the work of filtering once. This is because by filtering

twice the filter stencil is extended from 9-point to 25-point (about three times as many

points).

For 3D problems, the BPX1 (BPX2) preconditioning using trilinear elements is same

as the MGMF1 (MGMF2) preconditioning as shown in Table 5.2. The MG precondi-

tioner has not yet been implemented for 3D problems.

For all test problems, we use the standard 5- (or 7-) point stencil on a square (or
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cubic) uniform mesh with h -.-1 sad N = (.-1) 2 (or N = (--l)S), zero boundary

conditions sad zero initial guesses. Experimentsl results are given for different values of

h sad the stopping criterion is chosen to be [Jr _ [[ / [ [r°[ [ __ 10 4. Diagonal scsling

is always used except for RIC. The six test problems sre:

(1) the 2D model problem with solution u - z(z-1)y(y-1) e q,

A. =/, n = (0,i)=, (s.i)

(2)a 2D variablecoefficientproblem with solutionu ==ae=Usinz'zsinz'y,

oI 1o{o;j"_z + _ e" == f, f2 == (0,1)2, (5.2)

(3) a 2D problem with discontinuous coefficients with f == 2=(l-z)+2y(1-y),

0-7 _'= +a_u p(,,v) =I, a=(o,1)_ (5.s)

wh ere

lO = >0.5 y<0.5

z_<0.5 y >0.5,

elsewhere

(4) the 3D model problem with solutionu = z(1-z)y(I.-y)z(I-z)e =y*,

a==/, f_=(o,1) s,

(5) a 3D vsriable coefficient problem with solution u - e=Wsin_r:csinTrysinTrz,

(s.4)

'[ '=I'I':,]'I '=Ie-" _ + _ e" + _ e-" _ =/, a = (o,i)3 , (5.5)

(6) a 3D problem with discontinuous coefficients with f - 2=(l-=)+2y(l-y)+2=(l-z),

_'= P(='Y") _ + _'u ='Y'=) + _ ='Y _ =/'

where

n = (o,i)s , (s.8)

p(=,y,z) =
lO 4 z >0.5 with y <0.5, z <0.Sory >0.5, z > 0.5

= < 0.5 with y > 0.5, z < 0.5 or y __<0.5, z > 0.5.

elsewhere
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The number of itera?tions _nd operation counts per grid point are plotted in Figures 5.1-

5.6 (a) sad (b) respectively. We can make the following observations from these Figures.

I. The BPX and MGMF preconditionem have better convergence behavior compared

to the I-IB preconditioner, especially for 3D problems. The HB method is competi-

tive with the other multilevel methods only for the discontinuous coefficient prob-

]era in 2D.

2. The O(logan) convergence rate for all the multilevel methods is evident, except for

the 3D FIB method. The 3D HB method behaves like O(h -°'s°) and O(h "-°'7°) for

problems (5.4) and (5.5) which are close to the predicted theoretical result O(h-°'5).

However, for the discontinuous coefficient problem (5.6), it converges more slowly

like O(h-l"_).

3. In general, the MGMF methods perform slightly better than the corresponding BPX

methods. Recall that the only difference between the two methods is the choice of

the elementary filters.

4. Filtering twice (BPX2, BPX3, sad MG_2) does help to improve the convergence

rates for the model Poisson problem in both 2D sad 3D (the MGMP2 and BPX3

preconditioners appear to be spectrally equivalent.) However, for variable and

discontinuous coefficient problems, filtering twice does not seem to improve the con-

vergenee rates enough to compensate for the extra work involved.

5. The MGMF3 method is designed to incorporate the desired features of MGi_fl_'I sad

MGIV_2, i.e. the good convergence property due to filtering twice and the smaller

amount of work due to filtering once at the finest grid level. It turns out that it

works very well. MGM_F3 behaves better than MGMF1 but worse than MGMZF2 in

number of iterations required. However, in terms of amount of work, MGMF3 is

better than MGM_I and MGMF2.
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For small n ( approximately <: I00 ), the RIC method is actually quite competitive

with all the multilevel methods. In fact, for the discontinuous coefficient problems,

none or the multilevel preconditioners gives better convergence rate than the RIC

preconditioner. It appears that the RIC preconditioner captures the variation of the

coefficients especially well. Its performance deteriorates as n gets large, as predicted

by its inferior asymptotic convergence rate.

The MG preconditioner is among the most efficient methods for problems with

smooth coefficients. However, it has some difficulties with problems with discon-

tinu-ous coefficients. In fact, for Problem (5.3), MG(I,I) requires too many iterations

to fit on the plot. Instead we show the results for the MG(3,3) method, which con-

verges in a reasonable number of iterations but still requires the most work of all

the methods. We have noticed that the performance of the multigrid methods are

somewhat sensitive to the initial guess. In experiments with random initial guesses,

we have observed that the performance of the multigrid methods are significantly

improved. This may be due to the extra smoothing operations in the multigrid

methods which are more adapt at annihilating the high frequency errors inherent in

the random initial guess.
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8. Conclusions

The experiments] results show that the class of multilevel filtering preconditioners

compares favorably with the hierarchics] basis and the RIC preconditioners, at least for

problems with smooth coefficients and quasi-uniform grids such as used in our experi-

ments. For these types of problems, the multilevel filtering and the BPX methods

behave quite similarly to the multigrid preconditioner. What these new methods offer is

the saving of smoothing operations which are difl'icult to make effective for irregular

problems, while preserving the nice asymptotic convergence rates of multigrid precondi-

tioners.-The relative performance of the hierarchical basis method should improve for

irregular problems on highly non-uniform and refined meshes. Even though the RIC

preconditioner shows better convergence rate for strongly discontinuous coefficient prob-

lems, it has a low degree of parallelism. The multilevel filtering preconditioners are very

similar to the BPX method. What the filtering framework provides is the flexibility of

filter design which can lead to more efficient methods.
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Figure Captions

Figure 2.1: Spectra of A, p-l and P-IA.

Figure 2.2: Blockdiagram of the _ preconditioner with a single discretization

grid (SGMF).

Figure 2.3: Spectra of maximally flatlowpass filtersHL,j with J ffiI,3, 5.

Figure 2.4: Spectra of HL, I-HL_I and FL-I-

Figure 2.5: Eigenvalues of M-_A with J --I,3,5.

Figure 2.6: Condition numbers of the MF-preconditioned Laplacian with (a) J=l

and (b) J--3.

Figure 3.1:

Figure 3.2:

Figure 5.1:

Figure 5.2:

Figure 5.3:

Figure 5.4:

Figure 5.5:

Figure 5.6:

Blockdiagram of the MGMF preconditioner.

Blockdiagram of the modified MGMF precondltioner.

(a) Iteration and (b) operation counts for Test Problem 1.

(a) Iteration and (b) operation counts for Test Problem 2.

(a) Iteration and (b) operation counts for Test Problem 3.

(a) Iteration and (b) operation counts for Test Problem 4.

(a) Iteration and (b) operatlon counts for Test Problem 5.

(a) Iteration and (b) operation counts for Test Problem 6.
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Figure 3.1: Blo<:kd|_ram of the MG_L- _ preconditioner.
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Figure 3.2: Bloekdiagram of the modified MGlV_ preeondltioner.
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Optimal Nodal Trajectories
Linear Heat Flow Equation
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Figure 3.1. Linear Heat Equation with 4 freenodes: exact solution (dot-

ted llne),best fits(dashed Line)and optimal nodal trajectories(fullline)all

in u-x space•




